Mplus

首頁/產品一覽/資訊/消費電子/電腦軟硬體/電腦系統/軟體/Mplus
Mplus

Mplus是一個統計建模軟體為研究者提供了一個靈活的工具來分析數據,提供了多種選擇,具有易於使用的圖形界面和展示數據分析結果的模式,估計和算法。 Mplu

Mplus是一個統計建模軟體為研究者提供了一個靈活的工具來分析數據,提供了多種選擇,具有易於使用的圖形界面和展示數據分析結果的模式,估計和算法。

Mplus Version 6

Mplus Version 6 is now available. The major new feature in Mplus Version 6 is Bayesian analysis using MCMC. This includes multiple imputation for missing data as well as plausible values for latent variables. Other additions include replicate weights for complex survey data, survival analysis models and plots, convenience features for modeling with missing data, and several new general features.

The Version 6 Mplus User's Guide contains 16 new examples and one new chapter. Apart from adding new features, Mplus Version 6 contains corrections to minor problems that have been found since the release of Version 5.21, May 2009.

Bayesian Analysis (ESTIMATOR=BAYES)

Bayesian analysis can offer more information on model estimation than obtained by maximum likelihood and weighted least squares estimation. Bayesian estimation is also useful in some cases when a model is computationally intractable using maximum likelihood estimation or when the sample size is small and asymptotic theory is unreliable. Bayesian estimation uses Markov chain Monte Carlo (MCMC) algorithms to create approximations to the posterior distributions of the parameters by iteratively making random draws in the MCMC chain. Bayesian analysis in Mplus has the following features:

  • Single-level, multilevel, and mixture models
  • Continuous and categorical outcomes (probit link)
  • Default non-informative priors or user-specified informative priors (MODEL PRIORS)
  • Multiple chains using parallel processing (CHAIN)
  • Convergence assessment using Gelman-Rubin potential scale reduction factors
  • Posterior parameter distributions with means, medians, modes, and credibility intervals (POINT)
  • Posterior parameter trace plots
  • Autocorrelation plots
  • Posterior predictive checking plots

Multiple Imputation (DATA IMPUTATION)

Multiple imputation is carried out using Bayesian estimation to create several data sets where missing values have been imputed. The multiple imputations are random draws from the posterior distribution of the missing values. The multiple imputation data sets can be used for subsequent model estimation using maximum likelihood or weighted least squares estimation of each data set where the parameter estimates are averaged over the data sets and the standard errors are computed using the Rubin formula. A chi-square test of overall model fit is provided. The imputed data sets can be saved for subsequent analysis or analysis can be carried out at the time the imputed data sets are created. Imputation can be done based on an unrestricted H1 model using three different algorithms including sequential regressions. Imputation can also be done based on an H0 model specified in the MODEL command. The set of variables used in the imputation of the data do not need to be the same as the set of variables used in the analysis. Single-level and multilevel data imputation are available.

Plausible Values (PLAUSIBLE)

Plausible values are multiple imputations for missing values corresponding to a latent variable. They are available for both continuous and categorical latent variables. In addition to plausible values for each observation, a summary is provided over the imputed data sets for each observation and latent variable. For continuous latent variables, these include the mean, median, standard deviation, and 2.5 and 97.5 percentiles. For categorical latent variables, these include the proportions for each class.

Bayesian Analysis Features for Future Mplus Versions

Bayesian analysis using Mplus is an ongoing project. Features that are not yet implemented include:

  • EFA and ESEM
  • Logit link
  • Censored, count, and nominal variables
  • XWITH
  • Weights
  • Random slopes in single-level models
  • Latent variable decomposition of covariates in two-level models
  • c ON x in mixtures
  • Mixture models with more than one categorical latent variable
  • Two-level mixtures
  • MODEL INDIRECT
  • MODEL CONSTRAINT except for NEW parameters
  • MODEL TEST

Complex Survey Data

  • Using and generating replicate weights to obtain correct standard errors (REPWEIGHTS)
  • Finite population correction factor for TYPE=COMPLEX (FINITE)
  • Pearson and loglikelihood frequency table chi-square adjusted for TYPE=COMPLEX for models with weights
  • Standardized values in TECH10 adjusted for TYPE=COMPLEX for models with weights

Survival Analysis

  • New continuous-time survival analysis parameterization using a survival intercept to represent class (group) differences
  • Survival plots (for discrete-time survival specify the event history variables using the DSURVIVAL option of the VARIABLE command)
    • Kaplan-Meier curve
    • Sample log cumulative hazard curve
    • Estimated baseline hazard curve
    • Estimated baseline survival curve
    • Estimated log cumulative baseline curve
    • Kaplan-Meier curve with estimated baseline survival curve
    • Sample log cumulative hazard curve with estimated log cumulative baseline curve

Missing Data (DATA MISSING)

  • Creation of missing data dropout indicators for non-ignorable missing data (NMAR) modeling of longitudinal data
  • Descriptive statistics for dropout (DESCRIPTIVE)
  • Plots of sample means before dropout

General Features

  • New method for second-order chi-square adjustment for WLSMV, ULSMV, and MLMV resulting in the usual degrees of freedom
  • Merging of data sets (SAVEDATA)
  • Bivariate frequency tables for pairs of binary, ordered categorical (ordinal), and/or unordered categorical (nominal) variables (CROSSTABS)
  • Input statements that contain parameter estimates from the analysis as starting values (SVALUES)
  • Standard errors for factor scores
  • 90% confidence intervals (CINTERVALS)
  • Saving of graph settings (Axis Properties)



http://www.accesssoft.com.tw/pro_con.php?page=&idept=2&isdept=8&pk=103
您的意見是我們重要的資產,感謝您的支持與愛護!

 
AccessSoft 群昱股份有限公司-最優質的軟體代理商-Your Brilliant Solutions Provider
若您有任何軟體相關需求,歡迎您與我們連絡!
www.accesssoft.com.tw
TEL: 04-23052979
FAX: 04-23052997
E-mail: info@accesssoft.com.tw 歡迎寫信詢價!

#Mplus#統計分析#建模軟體#圖形界面#軟體#感應門神#台北舒壓#全身癌症標記篩檢

還在一家一家打電話?

使用台灣黃頁「智慧媒合」,一次發布需求,30分鐘內獲得多家報價。

免費發布詢價需求

企業名片

查看更多

歷史詢價

  • Zh**********
    員工打卡系統 需要系統連線上下班
    12-31 16:57
  • 周*生
    工程詢價 請提供報價給我
    12-31 16:43
  • 謝*承
    詢價 豬梅花冷凍肉片
    12-31 16:28
  • 蔡*玲
    想詢問抽血檢驗過敏原有分哪幾種項目類別以及收費謝謝
    12-31 16:27
  • 劉*原
    羊毛氈 厚度6.35*108*108
    12-31 16:26
  • 何*恆
    2026春酒詢問
    12-31 16:15
  • 楊*生
    中巴22-25人座
    12-31 16:03
  • 王*華
    詢價 想要請問價格計算方式
    12-31 15:57
  • J***n*****
    詢問棘輪把手.我不需要雷雕
    12-31 15:55
  • 鄭*昌
    每月費用 幼兒園一般性垃圾
    12-31 15:42
  • 黃*琦
    請問有販售麻繩嗎
    12-31 15:35
  • 江*綺
    柴油發電機_外送加柴油
    12-31 15:33
  • 採***怡*****
    螺絲表面防鏽要好一點 以下協助報價
    12-31 15:26
  • 李*鳳
    組裝2台新的電腦 以下協助報價給我
    12-31 15:25
  • j**k
    各式貓狗用的驅蟲藥、保健食品、用藥
    12-31 15:15
  • 潘*怡
    化糞池.FRC預鑄型 130人份(含鼓風機) 詢價
    12-31 15:12
  • 廖*醌
    洗潔精、漂白水~
    12-31 15:05
  • 林*瑜
    我想詢問一下,你們有額外賣葛瑞斯嬰兒床的螺絲嗎?
    12-31 14:58
  • 吳*
    詢價 想要請問兩人房價格?
    12-31 14:51
  • 黃*姐
    您好 我想要訂製木箱
    12-31 14:46
免費註冊
立即成為台灣黃頁 詢價供貨商,多站同步網路詢價單不漏接!
再送你獨立詢價官網!
免費註冊